
Nordic Collegiate Programming Contest
NCPC 2007

October 6th, 2007

The Problemset

A Phone List

B Cuckoo Hashing

C Parking

D Copying DNA

E Circle of Debt

F Full Tank?

G Nested Dolls

H Shopaholic

I Moogle

Do not look at the problems before the contest has started.

2

NCPC 2007 Problem A: Phone List 3

Problem A

Phone List

Given a list of phone numbers, determine if it is consistent in the
sense that no number is the prefix of another. Let’s say the phone
catalogue listed these numbers:

• Emergency 911

• Alice 97 625 999

• Bob 91 12 54 26

In this case, it’s not possible to call Bob, because the central would
direct your call to the emergency line as soon as you had dialled the
first three digits of Bob’s phone number. So this list would not be
consistent.

Input specifications

The first line of input gives a single integer, 1 ≤ t ≤ 40, the number of test cases. Each
test case starts with n, the number of phone numbers, on a separate line, 1 ≤ n ≤ 10000.
Then follows n lines with one unique phone number on each line. A phone number is a
sequence of at most ten digits.

Output specifications

For each test case, output “YES” if the list is consistent, or “NO” otherwise.

Sample input

2

3

911

97625999

91125426

5

113

12340

123440

12345

98346

Output for sample input

NO

YES

4 NCPC 2007 Problem A: Phone List

NCPC 2007 Problem B: Cuckoo Hashing 5

Problem B

Cuckoo Hashing

One of the most fundamental data structure problems is
the dictionary problem: given a set D of words you want to
be able to quickly determine if any given query string q is
present in the dictionary D or not. Hashing is a well-known
solution for the problem. The idea is to create a function
h : Σ∗ → [0..n − 1] from all strings to the integer range
0, 1, .., n− 1, i.e. you describe a fast deterministic program
which takes a string as input and outputs an integer between
0 and n−1. Next you allocate an empty hash table T of size
n and for each word w in D, you set T [h(w)] = w. Thus, given a query string q, you only
need to calculate h(q) and see if T [h(q)] equals q, to determine if q is in the dictionary.
Seems simple enough, but aren’t we forgetting something? Of course, what if two words
in D map to the same location in the table? This phenomenon, called collision, happens
fairly often (remember the Birthday paradox: in a class of 24 pupils there is more than
50% chance that two of them share birthday). On average you will only be able to put
roughly

√
n-sized dictionaries into the table without getting collisions, quite poor space

usage!
A stronger variant is Cuckoo Hashing1. The idea is to use two hash functions h1 and

h2. Thus each string maps to two positions in the table. A query string q is now handled
as follows: you compute both h1(q) and h2(q), and if T [h1(q)] = q, or T [h2(q)] = q, you
conclude that q is in D. The name “Cuckoo Hashing” stems from the process of creating
the table. Initially you have an empty table. You iterate over the words d in D, and
insert them one by one. If T [h1(d)] is free, you set T [h1(d)] = d. Otherwise if T [h2(d)] is
free, you set T [h2(d)] = d. If both are occupied however, just like the cuckoo with other
birds’ eggs, you evict the word r in T [h1(d)] and set T [h1(d)] = d. Next you put r back
into the table in its alternative place (and if that entry was already occupied you evict
that word and move it to its alternative place, and so on). Of course, we may end up
in an infinite loop here, in which case we need to rebuild the table with other choices of
hash functions. The good news is that this will not happen with great probability even if
D contains up to n/2 words!

Input specifications

On the first line of input is a single positive integer 1 ≤ t ≤ 50 specifying the number of
test cases to follow. Each test case begins with two positive integers 1 ≤ m ≤ n ≤ 10000
on a line of itself, m telling the number of words in the dictionary and n the size of the
hash table in the test case. Next follow m lines of which the i:th describes the i:th word
di in the dictionary D by two non-negative integers h1(di) and h2(di) less than n giving

1Cuckoo Hashing was suggested by the danes R. Pagh and F. F. Rödler in 2001

6 NCPC 2007 Problem B: Cuckoo Hashing

the two hash function values of the word di. The two values may be identical.

Output specifications

For each test case there should be exactly one line of output either containing the string
“successful hashing” if it is possible to insert all words in the given order into the
table, or the string “rehash necessary” if it is impossible.

Sample input

2

3 3

0 1

1 2

2 0

5 6

2 3

3 1

1 2

5 1

2 5

Output for sample input

successful hashing

rehash necessary

NCPC 2007 Problem C: Optimal Parking 7

Problem C

Optimal Parking

When shopping on Long Street, Michael usually parks his car at
some random location, and then walks to the stores he needs.
Can you help Michael choose a place to park which minimises
the distance he needs to walk on his shopping round?

Long Street is a straight line, where all positions are integer.
You pay for parking in a specific slot, which is an integer position
on Long Street. Michael does not want to pay for more than one
parking though. He is very strong, and does not mind carrying
all the bags around.

Input specifications

The first line of input gives the number of test cases, 1 ≤ t ≤ 100. There are two lines for
each test case. The first gives the number of stores Michael wants to visit, 1 ≤ n ≤ 20,
and the second gives their n integer positions on Long Street, 0 ≤ xi ≤ 99.

Output specifications

Output for each test case a line with the minimal distance Michael must walk given
optimal parking.

Sample input

2

4

24 13 89 37

6

7 30 41 14 39 42

Output for sample input

152

70

8 NCPC 2007 Problem C: Optimal Parking

NCPC 2007 Problem D: Copying DNA 9

Problem D

Copying DNA

Evolution is a seemingly random process which works in a way
which resembles certain approaches we use to get approximate
solutions to hard combinatorial problems. You are now to do
something completely different.

Given a DNA string S from the alphabet {A,C,G,T}, find the
minimal number of copy operations needed to create another string
T . You may reverse the strings you copy, and copy both from S
and the pieces of your partial T . You may put these pieces together
at any time. You may only copy contiguous parts of your partial
T , and all copied strings must be used in your final T . Example:
From S = “ACTG” create T = “GTACTATTATA”

1. Get GT......... by copying and reversing “TG” from S.

2. Get GTAC....... by copying “AC” from S.

3. Get GTAC...TA.. by copying “TA” from the partial T .

4. Get GTAC...TAAT by copying and reversing “TA” from the partial T .

5. Get GTACAATTAAT by copying “AAT” from the partial T .

Input specifications

The first line of input gives a single integer, 1 ≤ t ≤ 100, the number of test cases. Then
follow, for each test case, a line with the string S of length 1 ≤ m ≤ 18, and a line with
the string T of length 1 ≤ n ≤ 18.

Output specifications

Output for each test case the number of copy operations needed to create T from S, or
“impossible” if it cannot be done.

Sample input

5

ACGT

GTAC

A

C

ACGT

TGCA

ACGT

TCGATCGA

A

AAAAAAAAAAAAAAAAAA

Output for sample input

2

impossible

1

4

6

10 NCPC 2007 Problem D: Copying DNA

NCPC 2007 Problem E: Circle of Debt 11

Problem E

Circle of Debt

The three friends Alice, Bob, and Cynthia always seem to
get in situations where there are debts to be cleared among
themselves. Of course, this is the “price” of hanging out a
lot: it only takes a few resturant visits, movies, and drink
rounds to get an unsettled balance. So when they meet as
usual every Friday afternoon they begin their evening by
clearing last week’s debts. To satisfy their mathematically
inclined minds they prefer clearing their debts using as little
money transaction as possible, i.e. by exchanging as few
bank notes and coins as necessary. To their surprise, this can sometimes by harder than
it sounds. Suppose that Alice owes Bob 10 crowns and this is the three friends’ only
uncleared debt, and Alice has a 50 crown note but nothing smaller, Bob has three 10
crown coins and ten 1 crown coins, and Cynthia has three 20 crown notes. The best way
to clear the debt is for Alice to give her 50 crown note to Cynthia, Cynthia to give two
20 crown notes to Alice and one to Bob, and Bob to give one 10 crown coin to Cynthia,
involving a total of only five notes/coins changing owners. Compare this to the straight-
forward solution of Alice giving her 50 crown note to Bob and getting Bob’s three 10
crown notes and all his 1 crown coins for a total of fourteen notes/coins being exchanged!

Input specifications

On the first line of input is a single positive integer, 1 ≤ t ≤ 50, specifying the number of
test cases to follow. Each test case begins with three integers ab, bc, ca ≤ 1000 on a line
of itself. ab is the amount Alice owes Bob (negative if it is Bob who owes Alice money),
bc the amount Bob owes Cynthia (negative if it is Cynthia who is in debt to Bob), and
ca the amount Cynthia owes Alice (negative if it is Alice who owes Cynthia).

Next follow three lines each with six non-negative integers a100, a50, a20, a10, a5, a1,
b100, . . . , b1, and c100, . . . c1, respectively, where a100 is the number of 100 crown notes
Alice got, a50 is the number of her 50 crown notes, and so on. Likewise, b100, . . . , b1 is
the amount of notes/coins of different value Bob got, and c100, . . . , c1 describes Cynthia’s
money. Each of them has at most 30 coins (i.e. a10 +a5 +a1, b10 + b5 + b1, and c10 + c5 + c1

are all less than or equal to 30) and the total amount of all their money together (Alice’s
plus Bob’s plus Cynthia’s) is always less than 1000 crowns.

Output specifications

For each test case there should be one line of output containing the minimum number of
bank notes and coins needed to settle the balance. If it is not possible at all, output the
string “impossible”.

12 NCPC 2007 Problem E: Circle of Debt

Sample input

3

10 0 0

0 1 0 0 0 0

0 0 0 3 0 10

0 0 3 0 0 0

-10 -10 -10

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

-10 10 10

3 0 0 0 2 0

0 2 0 0 0 1

0 0 1 1 0 3

Output for sample input

5

0

impossible

NCPC 2007 Problem F: Full Tank? 13

Problem F

Full Tank?

After going through the receipts from your car trip through Europe
this summer, you realised that the gas prices varied between the cities
you visited. Maybe you could have saved some money if you were a bit
more clever about where you filled your fuel?

To help other tourists (and save money yourself next time), you
want to write a program for finding the cheapest way to travel between
cities, filling your tank on the way. We assume that all cars use one
unit of fuel per unit of distance, and start with an empty gas tank.

Input specifications

The first line of input gives 1 ≤ n ≤ 1000 and 0 ≤ m ≤ 10000, the number of cities and
roads. Then follows a line with n integers 1 ≤ pi ≤ 100, where pi is the fuel price in the
ith city. Then follow m lines with three integers 0 ≤ u, v < n and 1 ≤ d ≤ 100, telling
that there is a road between u and v with length d. Then comes a line with the number
1 ≤ q ≤ 100, giving the number of queries, and q lines with three integers 1 ≤ c ≤ 100, s
and e, where c is the fuel capacity of the vehicle, s is the starting city, and e is the goal.

Output specifications

For each query, output the price of the cheapest trip from s to e using a car with the
given capacity, or “impossible” if there is no way of getting from s to e with the given
car.

Sample input

5 5

10 10 20 12 13

0 1 9

0 2 8

1 2 1

1 3 11

2 3 7

2

10 0 3

20 1 4

Output for sample input

170

impossible

14 NCPC 2007 Problem F: Full Tank?

NCPC 2007 Problem G: Nested Dolls 15

Problem G

Nested Dolls

Dilworth is the world’s most prominent collector of Russian
nested dolls: he literally has thousands of them! You know,
the wooden hollow dolls of different sizes of which the smallest
doll is contained in the second smallest, and this doll is in turn
contained in the next one and so forth. One day he wonders if
there is another way of nesting them so he will end up with fewer
nested dolls? After all, that would make his collection even more
magnificent! He unpacks each nested doll and measures the width and height of each
contained doll. A doll with width w1 and height h1 will fit in another doll of width w2

and height h2 if and only if w1 < w2 and h1 < h2. Can you help him calculate the smallest
number of nested dolls possible to assemble from his massive list of measurements?

Input specifications

On the first line of input is a single positive integer 1 ≤ t ≤ 20 specifying the number of
test cases to follow. Each test case begins with a positive integer 1 ≤ m ≤ 20000 on a
line of itself telling the number of dolls in the test case. Next follow 2m positive integers
w1, h1, w2, h2, . . . , wm, hm, where wi is the width and hi is the height of doll number i.
1 ≤ wi, hi ≤ 10000 for all i.

Output specifications

For each test case there should be one line of output containing the minimum number of
nested dolls possible.

Sample input

4

3

20 30 40 50 30 40

4

20 30 10 10 30 20 40 50

3

10 30 20 20 30 10

4

10 10 20 30 40 50 39 51

Output for sample input

1

2

3

2

16 NCPC 2007 Problem G: Nested Dolls

NCPC 2007 Problem H: Shopaholic 17

Problem H

Shopaholic

Lindsay is a shopaholic. Whenever there is
a discount of the kind where you can buy
three items and only pay for two, she goes
completely mad and feels a need to buy all
items in the store. You have given up on
curing her for this disease, but try to limit
its effect on her wallet.

You have realized that the stores coming with these offers are quite selective when it
comes to which items you get for free; it is always the cheapest ones. As an example,
when your friend comes to the counter with seven items, costing 400, 350, 300, 250, 200,
150, and 100 dollars, she will have to pay 1500 dollars. In this case she got a discount
of 250 dollars. You realize that if she goes to the counter three times, she might get a
bigger discount. E.g. if she goes with the items that costs 400, 300 and 250, she will get a
discount of 250 the first round. The next round she brings the item that costs 150 giving
no extra discount, but the third round she takes the last items that costs 350, 200 and
100 giving a discount of an additional 100 dollars, adding up to a total discount of 350.

Your job is to find the maximum discount Lindsay can get.

Input specifications

The first line of input gives the number of test scenarios, 1 ≤ t ≤ 20. Each scenario
consists of two lines of input. The first gives the number of items Lindsay is buying,
1 ≤ n ≤ 20000. The next line gives the prices of these items, 1 ≤ pi ≤ 20000.

Output specifications

For each scenario, output one line giving the maximum discount Lindsay can get by
selectively choosing which items she brings to the counter at the same time.

Sample input

1

6

400 100 200 350 300 250

Output for sample input

400

18 NCPC 2007 Problem H: Shopaholic

NCPC 2007 Problem I: Moogle 19

Problem I

Moogle

You got the original idea of making map software, called Moogle
Maps, for the new cool Maple mPhone. It will even be capable
of indicating the location of a house address like ”Main Street 13”.
However, since the mPhone has limited storage capacity, you need to
reduce the data amount. You don’t want to store the exact location of
every single house number. Instead only a subset of the house numbers
will be stored exactly, and the others will be linearly interpolated.
So you want to select house numbers that will minimise the average
interpolation error, given how many house locations you have capacity
to store. We view the street as a straight line, and you will always
store the first and the last house location.

Given that you’ve stored the locations xi and xj for the houses
with numbers i and j respectively, but no other house in between,
the interpolated value for a house with number k with i < k < j is
xi + (xj − xi) · k−i

j−i
.

Input specifications

The first line of input gives a single integer, 1 ≤ t ≤ 50, the number of test cases.
For each test case, there are two lines. The first contains 2 ≤ h ≤ 200 and 2 ≤ c ≤ h,

where h is the number of houses in the street and c is the number of house locations that
can be stored. The second contains h integers in increasing order giving the location of
the h houses. Each location is in the interval [0, 1000000].

Output specifications

For each test case, output the average interpolation error over all the h houses for the
optimal selection of c house locations to store. The output should be given with four
decimal places, but we will accept inaccuracies of up to ±0.001.

Sample input

2

4 3

0 9 20 40

10 4

0 10 19 30 40 90 140 190 202 210

Output for sample input

0.2500

0.3000

